# RNA & PROTEIN SYNTHESIS

### DNA & RNA

- <u>Genes</u> are coded DNA instructions that control the production of proteins within the cell.
  - The first step in decoding these genetic messages is to copy part of the nucleotide sequence from DNA into RNA or ribonucleic acid.
    - RNA is a Nucleic Acid
      - made up of nucleotides
      - contains the elements <u>C, H, O, N, P</u>

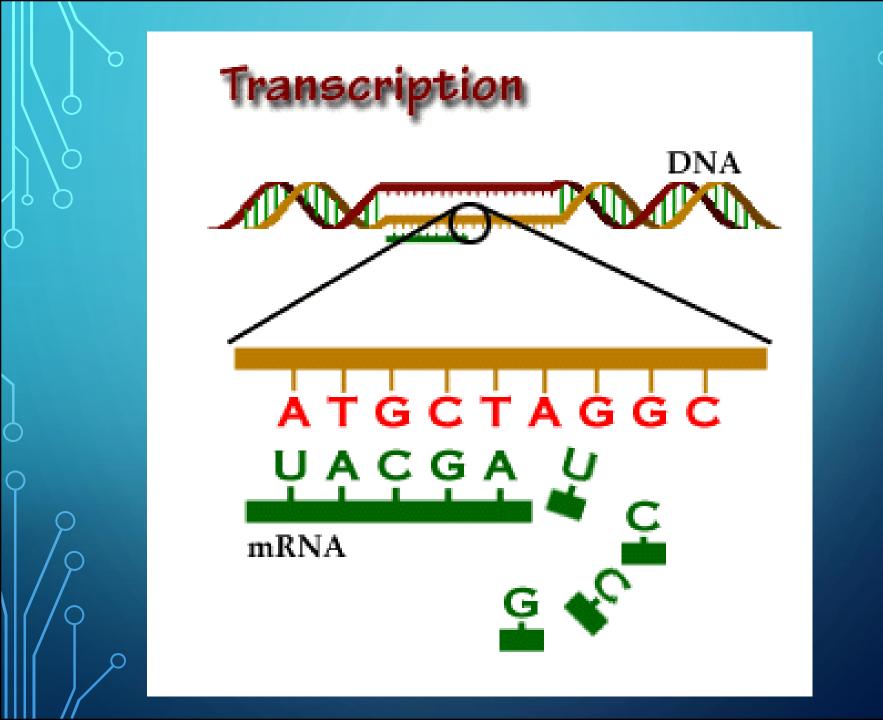
STRUCTURE OF RNA • Single stranded • Contains the following: Phosphate group • 5 carbon sugar (ribose) • Nitrogenous base: Adenine, Uracil, Cytosine, and Guanine • The function of RNA is to synthesize proteins

| DIFFERENCES BETWE          | EN DNA AND RNA           |  |  |
|----------------------------|--------------------------|--|--|
| DNA                        | ded Single stranded      |  |  |
| Double stranded            |                          |  |  |
| Sugar group is deoxyribose | Sugar group is ribose    |  |  |
| Nitrogenous base: Thymine  | Nitrogenous base: Uracil |  |  |
| Stores genetic information | Passes on the DNA code   |  |  |

## **> TYPES OF RNA**

Three (3) main types

- 1.Messenger RNA (mRNA)
  - transfers DNA code to ribosomes for translation.
- 2. Transfer RNA (tRNA)
  - brings amino acids to ribosomes for protein synthesis.
- 3. Ribosomal RNA (rRNA)
  - Ribosomes are made of rRNA and protein; rRNA helps to identify/read the mRNA




### TRANSCRIPTION: CHANGING DNA TO RNA

It is important to realize that DNA and proteins have a direct relationship. In other words, DNA is used to make proteins and the first step by which it does this is a process called transcription.

## TRANSCRIPTION: 1<sup>ST</sup> STEP INPROTEIN SYNTHESIS

- In <u>transcription</u>, an <u>RNA</u> (ribonucleic acid) strand is made from a strand of <u>DNA</u>.
  Takes place in the <u>nucleus</u>.
- In order for this to occur, a DNA strand unzips and <u>RNA</u> bases come along and pair up with the exposed DNA bases.
- Enzymes reassemble the nucleotides and the strand is now called <u>mRNA</u>, or <u>messenger</u>
   RNA.



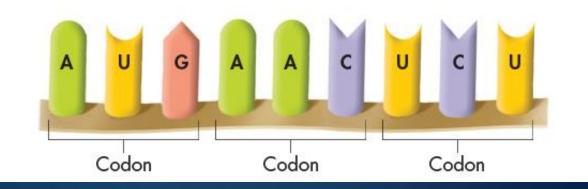
**TRANSCRIPTION: CHANGING DNA TO RNA** •<u>Messenger RNA</u> (mRNA) will now deliver a message telling the ribosomes in the cell to get ready to start making proteins.

## **• THE GENETIC CODE**

- Proteins are made by joining amino acids together into a long chain called polypeptides held together by peptide bonds.
  - There are <u>20</u> different amino acids.
- The specific amino acids in a polypeptide, and the order in which they are joined, determine the properties of different proteins.
- The <u>sequence</u> of amino acids influences its <u>shape</u> which determine its <u>function</u>.

## **THE GENETIC CODE**

This is the language of <u>mRNA</u>.
Based on the 4 bases of mRNA
Adenine, Guanine, Cytosine, and Uracil (AGCU)


• The genetic code is read <u>three</u> (3) "letters" at a time, so that each "word" is three (3) bases long and corresponds to a single amino acid.

These "words" are 3 RNA sequences called <u>codons</u>.

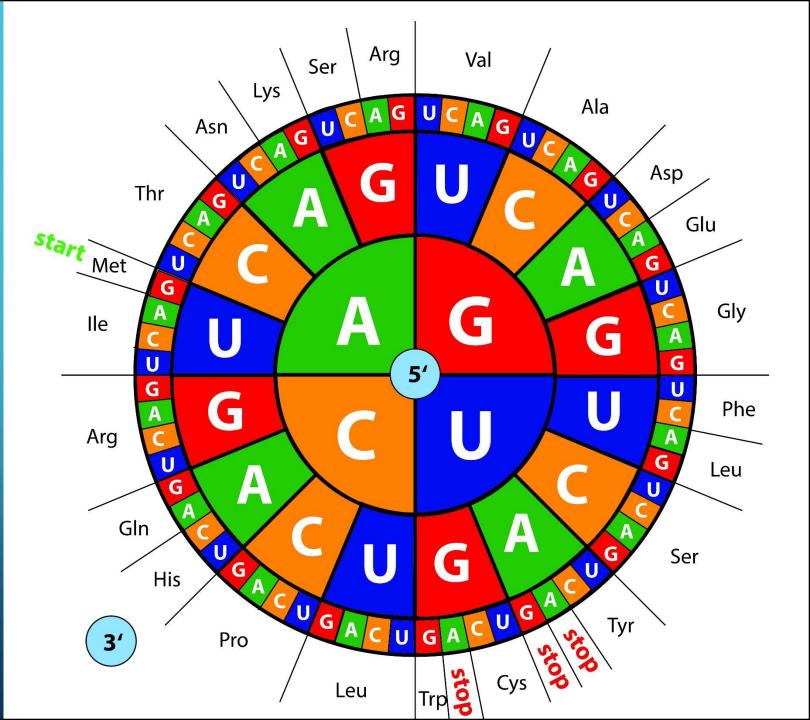
## **THE GENETIC CODE**

Each three-letter "word" in mRNA is known as a <u>codon</u>.

A <u>codon</u> consists of three consecutive <u>nitrogen bases</u> that specify a single amino acid to be added to the polypeptide chain.
Each codon specifies <u>1 amino acid</u>



## **READING THE GENETIC CODE** •When you read one codon at a time it can be used to determine which **amino** acid (and this determines which protein) each strand of DNA or RNA will code for.


<u>Example</u>: Use the codon chart to determine which protein the codon ACG codes for.

#### CODON CHART

| FIRST  | SECOND LETTER   |           |            |            | THIRD    |
|--------|-----------------|-----------|------------|------------|----------|
| LETTER | U               | С         | A          | G          | 1 LETTER |
| U      | Pheny la lanine | Serine    | Tyrosine   | Cysteine   | U        |
|        | Pheny la lanine | Serine    | Tyrosine   | Cysteine   | С        |
|        | Leucine         | Serine    | Stop       | Stop       | A        |
|        | Leucine         | Serine    | Stop       | Tryptophan | G        |
|        |                 |           |            |            |          |
| с      | Leucine         | Proline   | Histidine  | Arginine   | U        |
|        | Leucine         | Proline   | Histidine  | Arginine   | С        |
|        | Leucine         | Proline   | Glutamine  | Arginine   | A        |
|        | Leucine         | Proline   | Glutamine  | Arginine   | G        |
| A      |                 |           |            |            |          |
|        | Isoleucine      | Threonine | Asparagine | Serine     | U        |
|        | Isoleucine      | Threonine | Asparagine | Serine     | С        |
|        | Isoleucine      | Threonine | Lysine     | Arginine   | A        |
|        | (Start)         | Threonine | Lysine     | Arginine   | G        |
|        | Methionine      |           |            |            |          |
| Г      |                 |           |            |            |          |
| G      | Valine          | Alanine   | Aspartate  | Glycine    | U        |
|        | Valine          | Alanine   | Aspartate  | Glycine    | С        |
|        | Valine          | Alanine   | Glutamate  | Glycine    | A        |
|        | Valine          | Alanine   | Glutamate  | Glycine    | G        |

D O Ν C

С



#### **RNA SEQUENCE PRACTICE**

## DNA: T C G A T A G T C G

mRNA:

Which **RNA** bases complement the above strand of DNA?

#### **RNA SEQUENCE PRACTICE**

## 

**Amino acids:** 

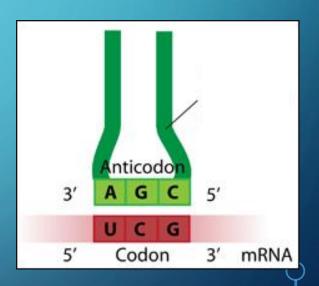
Use your codon chart to find out which amino acids are formed!

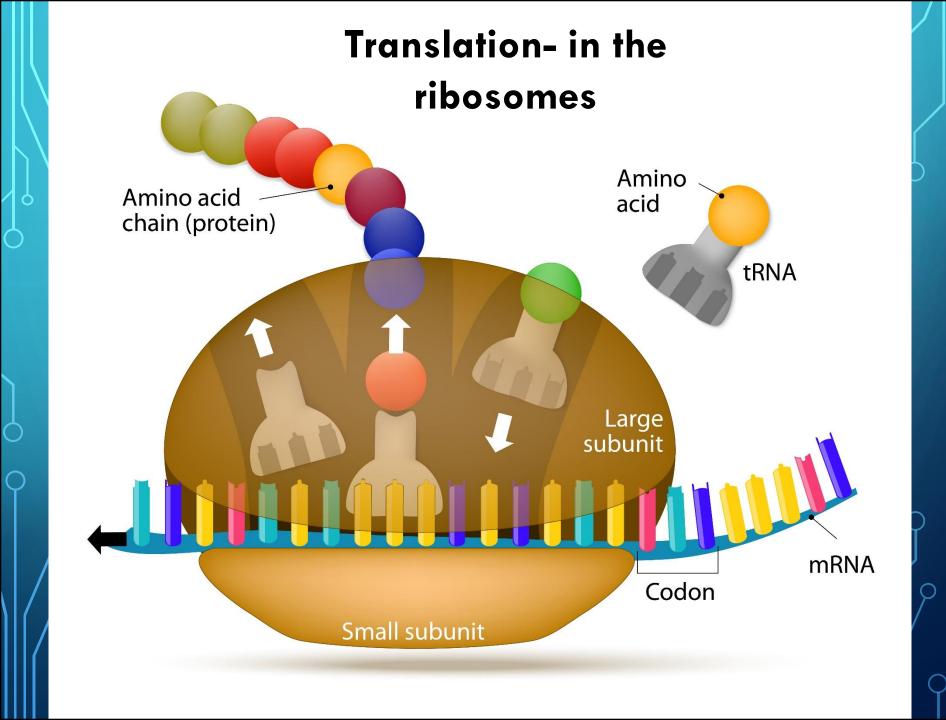
### TRANSLATION: 2<sup>ND</sup> STEP IN PROTEIN SYNTHESIS

- Translation is the process by which proteins are made using RNA.
- This process occurs in the <u>ribosomes</u> of the cell.

Translation begins when an mRNA in the cytoplasm attaches to a <u>ribosome</u>.

### TRANSLATION: 2<sup>ND</sup> STEP IN PROTEIN SYNTHESIS

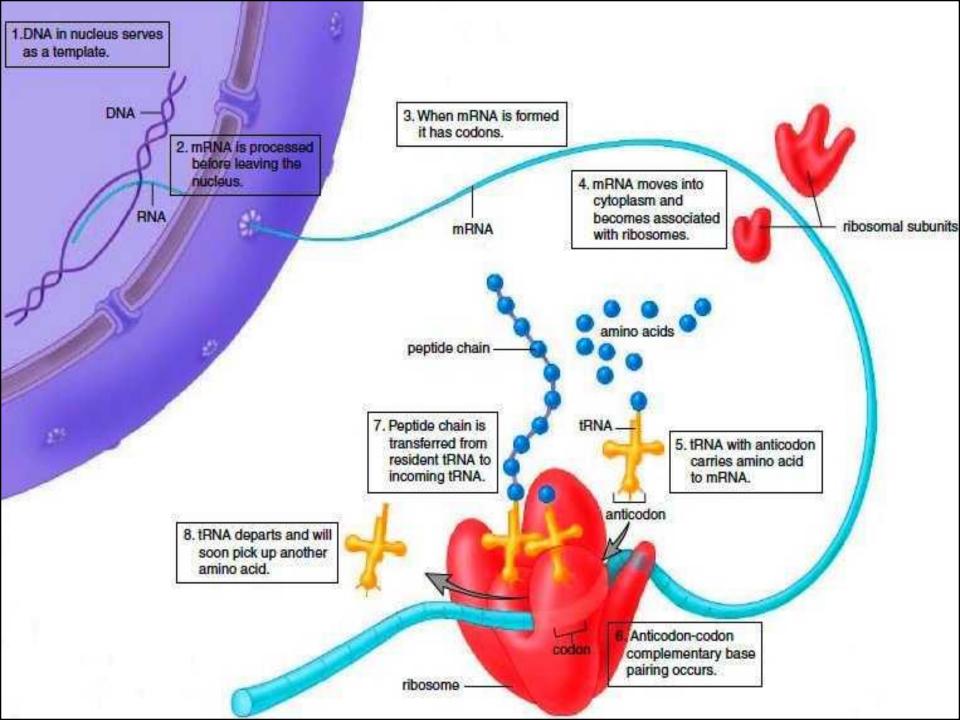

•As each codon of mRNA moves through the ribosome (rRNA), the proper amino acid is brought in by **tRNA** 


 In the ribosome the amino acid is transferred to the growing polypeptide chain

#### > TRANSLATION: CONVERTING RNA TO PROTEINS

Each tRNA carries only one kind of amino acid
Each tRNA has three unpaired bases, called the <u>anticodon</u>

 The anticodon is complementary to the mRNA codon






## TRANSLATION: CONVERTING RNA TO PROTEINS

 Amino acids continue to link together to form proteins inside the ribosomes until a "stop"
 codon is read and the finished proteins are released into the cell.

• Therefore, ribosomes use the sequence of codons in mRNA to assemble amino acids into polypeptide chain.

