Plants

Yes, they are LIVING!!

What is a Plant?

All plants are:

- * Photosynthetic.
- * <u>Multicellular</u>.
- * Eukaryotic.
- Most plants
 can reproduce
 <u>sexually</u>.
- All plants have
 <u>cellulose</u> in their
 cell walls.

Plant History

- Absorb nutrients from their surroundings using what organ? (what came first the organ or absorption of nutrients)
- Conserve water with their
 <u>Cuticle</u> (waxy covering)
- Achieve fertilization without water.
 (pollen and spores)

What Plants Need To Survive

- * Sunlight
- * Water & Minerals
- * Gas Exchange $O_2 \& CO_2$
- Movement of water & nutrients roots
 & leaves

Origins of Plants

- Evolved from <u>photosynthetic</u> algae and photosynthetic plant-like bacteria
- * All Plants are multi-cellular & perform photosynthesis
- Green algae have the size, color, & appearance of plants but they are protists

Four Types of Plants

1. NONVASCULAR PLANTS/ Bryophytes

- Lack true roots, stems and leaves.
- <u>Small</u> in size (usually < 3 cm tall).
- Nutrients and water transported by <u>osmosis</u> and diffusion.
- Require water for <u>sexual</u> reproduction.
- <u>Rhizoids</u> hair-like projections that anchor the plant to growing surfaces.

1. NONVASCULAR PLANTS

• Examples:

Mosses, Liverworts, and Hornworts

2. VASCULAR, SEEDLESS PLANTS

- Have both a <u>xylem</u> and <u>phloem</u>.
- Can grow to large sizes.
- Produce <u>spores</u> (not seeds).
- Have true roots, stems and leaves.
- <u>Ex's:</u> ferns, club mosses, horse tails and whisk ferns

Vascular, SEED Plants

- These are currently the most complex organisms of the plant kingdom.
- Can be separated into <u>two subtypes</u>:

- i. Gymnosperms
- ii. Angiosperms

3. GYMNOSPERMS

- "<u>Naked</u> Seeds"
- Plants whose seeds do <u>not</u> develop within a sealed container (<u>fruit</u>).
- <u>Cones</u>/Pollen
 - Male and female cones
 - Wind pollination
 - Water pollination
 - Animal pollination

3. GYMNOSPERMS

Examples:

- i. Conifers (redwood, pine, spruce, etc.)
- ii. Cycads
- iii. Ginkgo
- iv. Gnetophytes

4. ANGIOSPERMS

- Flowering Plants…"<u>Seed</u> Cases"
 - Have a protective seed coat that others do not have (<u>advantage</u> over gymnosperms)
 - Seed coat- protects the seed from drying out
- Plants which produce seeds that develop while enclosed within a specialized structure (fruit).
- Most <u>successful</u> of all the plant groups.
- Flowers promote pollination and fertilization.

Angiosperm Parts

peanu

-ndospe

- a. <u>Flowers</u> reproductive structures that produce pollen and seeds.
- b. <u>Fruits</u> structure in which seeds of angiosperms develop and are used for seed dispersal.
- c. <u>Endosperm</u> supply of stored food inside of seeds.

Angiosperm Types

Angiosperms can be divided into <u>two</u> sub-categories of plants as well:

i. Monocots

ii. Dicots

Angiosperm Types

<u>Monocots</u> - flowering plants that produce seeds with <u>one</u> seed leaf (cotyledon).

Usually produce flower parts in multiples of <u>three</u>
 and have long narrow leaves with parallel veins.
 Examples:

Irises, Tulips, Wheat, Corn, Rice, Grass

Angiosperm Types

<u>**Dicots</u></u> - flowering plants that produce seeds with <u>two</u> seed leaves (cotyledons).</u>**

- Usually produce flower parts in twos, fours, or fives and have branching or netted veins.

- Examples:

Daises, Sunflowers, Lettuce, Beans, Peas,

Apples, Roses, Tomatoes, Peanuts

Plant Evolution

* Importance of Plants: Without plants animals <u>could not</u> survive on land!!!

Plant Systems & Organization

Seeded Plant Organization

- * Organized into:
 - Tissues: Involved in transport of nutrients
 - * Vascular- xylem & phloem
 - * Dermal- cuticle wax, stomata & guard cells
 - * Ground- Carbohydrate storage
 - Organs: Photosynthesis & transport of nutrients
 - * Stems- conduct water & nutrients
 - * Roots- take in water & nutrients
 - * Leaves- photosynthesis
 - Systems:
 - * Reproductive
 - * Transport
 - * Photosynthetic

Roots, Stems, & Leaves

- * Tap root: found mainly in dicots
 - grows long & thick while secondary (lateral) roots remain small
- * Fibrous root: found mainly in monocots
 - branch to such an extent that no single root grows larger than the rest
 - adapted to absorb water that is close to the ground's surface

fibrous root system

tap root system

- <u>Parts of a root cell</u>: cell wall, nucleus, vacuole (<u>no</u> chloroplasts)
- * Absorbs water & dissolved nutrients/minerals
- Root <u>hairs</u> (dermal tissue): use active transport to bring in nutrients from the soil & <u>osmosis</u> causes water to follow the minerals; increase the surface area available for water absorption
- * Casparian Strip: specialized cells that work like a one way valve
 - ensure water and minerals do not exit once they have entered the plant roots
- * Anchor plants in the ground, holding soil in place & preventing erosion
- * <u>2 main types of roots</u>:

Roots

Root Structure

- Outside layer
- Epidermis
 - Root hairs
 - Cortex
- Central cylinder vascular system
- Root Cap cellular production

 Key role in water/mineral transport

Roots

- Plant Nutrient
 Uptake
 - Soil type
 determines plant
 type
- Plant requirements
 - \circ Oxygen, CO₂
 - Nitrogen
 - Phosphorus
 - Potassium
 - Magnesium
 - Calcium
 - Trace elements

Roots

- Active Transport in Plants
 - Root hairs use ATP
 - Pump minerals from soil
 - Causes water molecules to follow by osmosis
 - Vascular Cylinder
 - Casparian Strip water retention
- Root Pressure
 - Forces water up into the plant

Specialized Tissues in Plants

Functions of the Roots

- Absorbs water and nutrients
- Anchor plant to the ground
- Hold soil in place and prevent erosion
- Protect from soil bacteria
- Transport water and nutrients
- Provide upright support

Stems

Stem Types

- Monocot vascular bundles are scattered throughout
 - Distinct epidermis
- Dicot vascular tissue arranged in a cylinder
 - *Pith* parenchyma cells inside the ring

Stem Growth

- **Primary growth -** cambium produces tissue and increases thickness
 - Cork cambium produces outer covering of stems
 - new cells produced at the root tips and shoots
 - Increases the length

Secondary growth – increase in stem width
Vascular

Stems

Formation of wood

- Wood layers of xylem
- Produced year after year
- Results from the older xylem not conducting water – *heartwood*
- Becomes darker with age
- Sapwood surrounds heartwood

Layers of Wood

- * Transport system that carries nutrients
- * Defense system that protects the plant against predators & diseases
- Have 3 important functions produce leaves, branches, & flowers
- Hold leaves up to the <u>sunlight;</u> transport substances between roots & leaves
- Stem contains <u>vascular</u> bundles (veins) that each contain xylem & phloem tissue

Vascular Tissue

- <u>Transport</u> system (transports water and nutrients) in plants; internal system of interconnected <u>tubes</u> and <u>vessels</u>
- 2 types: Xylem and Phloem
- <u>Xylem</u> carries <u>water & minerals</u> upwards
- <u>Phloem</u> carries <u>sugars</u> produced by photosynthesis *down* from the leaves & nutrients are carried up to be used in photosynthesis
- Xylem and phloem *differ in <u>direction</u>* in which they transport materials

Specialized Tissues in Plants

Xylem

- Two types
 - Seed plants
 - Angiosperms
- Tracheid long narrow cells
- Walls are connected to neighboring cells
- Will eventually die
- *Vessel Element* wider than tracheids

Specialized Tissues in Plants Phloem

- Sieve Tube Elements
 - Cells arranged end to end
 - Pump sugars and other foods
- Companion Cells
 - Surround sieve tube elements
 - Support phloem cells

Stem Growth

- Plants unlike animals and other organisms grow throughout their lifetime
- New cells are produced at the tips of roots
 & shoots (at the ends), this growth in
 length is called primary growth
- Occurs in <u>apical</u> meristems, special embryonic tissue, where constant cell division takes place
- Occurs in <u>all</u> seed plants

Specialized Tissues in Plants Plant Growth

• Meristems

- tissues responsible for growth
- Undifferentiated cells
- Apical Meristem
 - Produce growth increased length
- Differentiation
 - Cells will assume roles in the plant
- Flower Development
 - Starts in the meristem

Plant Growth

77)

Specialized Tissues in Plants

Functions of the Stems

- Support for the plant body
- Carries nutrients throughout plant
- Defense system to protect against predators and infection
- Few millimeters to 100 meters

- Plant's main <u>photosynthetic</u> system
- * Two parts: blade & petiole
 - Blade: thin flattened section (collects <u>sunlight</u>)
 - largest part
 - Petiole: structure (thin stalk) that attaches blade to stem (node)

Specialized Tissues in Plants

Functions of Leaves

- Main
 photosynthetic
 systems
- Susceptible to extreme drying
- Sight of
 oxygen/carbon
 dioxide intake
 and release

Specialized Tissues in Plants

- Dermal Tissue
 - Outer covering
 - Single layer of cells
 - Cuticle waxy coating
 - Trichomes –
 Spiny projections on the leaf
 - Roots have dermal tissue
 - Root hairs
 - Guard Cells

Leaves-Functions

Photosynthesis – occurs in the *mesophyll*

- Palisade mesophyll absorb light
- Spongy mesophyll beneath palisade level
- Stomata pores in the underside of the leaf
- Guard Cells –
 Surround the stomata

Leaf- Dermal Tissues

<u>Stomata</u>: pore-like openings in the underside of the leaf that allow for **gas exchange**: CO_2 diffuses into & O_2 diffuses out of the leaf

- Fluid exits through evaporation

Guard cells control the opening & closing of stomata

<u>Cuticle:</u> waxy covering that protects leaf & prevents water loss- found in cells on the plant surface

Transport in Plants

Transpiration

- Evaporation is the major moving force
- As water is lost,
 osmotic pressure
 moves water out of
 vascular tissue
- This pulls water up from the stem to the leaves
- Affected by heat, humidity, and wind

Leaves and Transpiration Transpiration

Loss of water through its leaves

Replaced by water drawn into the leaf

Transport in Plants

Controlling Transpiration

- Open the stomata increase water loss
- Close the stomata decrease water loss

Capillary Transport in Plants

Capillary transport results from both cohesive and adhesive forces

- Water molecules attracted to one another
- Water is also attracted to the xylem tubes in the plant
- Causes water to move from roots to the stem and upward
- Increases as the stem diameter decreases

Specialized Tissue/Cells in Plants

- * Some major types of plant cells:
 - Parenchyma
 - Collenchyma
 - Sclerenchyma
- Tissues that are neither dermal nor vascular are ground tissue
- Ground tissue internal to the vascular tissue is <u>pith</u>
- Ground tissue external to the vascular tissue is <u>cortex</u>
- Ground tissue includes cells specialized for storage, photosynthesis, and support

Practice

* Based on what you know about the FUNCTION of leaves, why would the leaves at the bottom of a tree be LARGER than the leaves found near the top of a tree?

Practice

* Why can photosynthesis be difficult for some plants in the rainforest?

Plant Reproduction

Not just birds and bees do it...

Sexual Reproduction in <u>Seedless</u> Plants

 Fertilization for seedless plants usually occurs during or soon after <u>rain</u>, when the spores are covered with water.

- * Only then can the spore/sperm <u>swim</u> to the egg.
- * Once together they form a <u>sporophyte</u>, which can then continue its life cycle.

Sexual Reproduction in <u>Seed</u> Plants

- Gymnosperms & Angiosperms (vascular, seed plants) do not release <u>spores</u> in rain like other plants.
- * Benefit...water not needed!

Sexual Reproduction in <u>Seed</u> Plants

Examples of Reproductive Structures:

a) <u>Pollen Grain</u> - male gamete/gametophyte (wind and animals transport pollen grains)
b) <u>Ovule</u> - female gamete/gametophyte (remains with the plant)

Reproduction Terms (Seed Plants)

* <u>Pollination</u> - transfer of pollen grains from the male structures to the female structures.

 <u>Seed Coat</u> - the hardened outer cell layers of an ovule that protects the embryo.

Sexual Reproduction in <u>Seed</u> Plants Continued

- <u>Gymnosperms</u> type of plant where seeds develop within cones (pine cones are used for reproduction)
- Angiosperms type of plant where the seeds develop within flowers

- * Benefit: Offer protection
- Drawback: Wind pollination mostly...not a lot of cone eating animals to distribute seeds
- Some species have
 "berry-like" cones for
 distribution...juniper & yew

Flowers

- * Benefit: Attracting pollinators...more directed "reproduction"
- Pollinators then carry pollen from one flower to another
- Drawback: Not as protective as cones (some flowers are tasty to both animals and people).

Angiosperms - Flowers

Flowers Have Four Whorls (Layers):

- 1. <u>Sepals</u> the outermost layer= protection when the flower is a bud

Petal

Sepals

2. <u>Petals</u> –used to attract the pollinators.

Angiosperm - Flowers

3. <u>Stamens</u> –make pollen, consists of anther and filament

<u>Anther</u> – pollen-producing sac on top of stamen.

* Pollen- covers/protects sperm

4. <u>Pistils/Carpel</u> –produces ovules.

<u>Ovary</u> – the pistil's swollen lower portion is the spot where the ovules develop.

Style - the stalk that rises from ovary.

<u>Stigma</u> – the swollen, sticky tip of style- area where pollen lands and sticks

How flowers attract pollinators

- * Color (even white)
- Scent Some smell sweet (promise of nectar, some smell terrible (flies are attracted to lay their eggs)
- * Bribes nectar
- Lies hormones and shape may deceive wasps

Examples of Flower Pollinators:

- a. Bees
- b. Flies
- c. Moths
- d. Hummingbirds
- e. Bats
- f. Wind

Fruits

- A fruit is a ripened ovary
- * The fruit:
 - protects the seeds
 - allows for
 distribution/dispersal of
 the seeds
 - is a source of food for other organisms

Plants & Environmental Influences

- Tropisms a response in which a plant grows either toward or away from a stimulus
 - Phototropism response to light
 - Gravitropism response to gravity
 - Thigmotropism response to touch

TROPISM- Plants MOVE

Tropismis a biological phenomenon, indicating growth or turning movement a plant in response to an environmental stimulus

Phototropism

 Movement of plants toward light
 Maximizes amount of sun for photosynthesis to make their food.

Phototropism <u>http://www.youtube.com/watch?NR=1&v=KQOC_bPrqFs&safe</u> <u>ty_mode=true&persist_safety_mode=1</u>

Gravitropism

Movement of plants in response to gravity

<u>Positive</u> is toward gravity (roots grow down)

<u>Negative</u> is away from gravity (shoot, stems, and leaves grow up)

Why? Allows plants to grow properly and get nutrients and sunlight

http://www.youtube.com/watch?v=mYZXax8V_L0&feature=related&safety_m ode=true&persist_safety_mode=1
Hydrotropism

Movement by plants toward water.

Why?

Roots search for and grow toward water, because it is needed for photosynthesis and to support cell structure.

http://virtualastronaut.tietronix.com/textonly/act25/text-plants.html

Thigmotropism

Plants moving in response to touch. <u>Positive</u> is toward touch (vines wrap around structures)

<u>Negative</u> is away from touch (some plants close up when touched)

Why?

To support leaves as they grow higher to reach the sun to make more food (photosynthesis).

http://www.youtube.com/wat ch?v=8HeedWWe6VA&featur e=related&safety_mode=true &persist_safety_mode=1

Phototropism

- Response to sunlight- bending of plants toward light sources
 - Maximizes exposure to light, thereby increasing the rate of sugar formation
- Controlled/triggered by hormones called auxins
- *Auxin* accumulates where light is LESS intense and causes elongation (cells with less light grow longer)
 In a stem, this growth pattern causes the stem to bend toward a light source -Greatest concentration of auxins in area of plant <u>further</u> away from light

EARLY EXPERIMENTS ON PHOTOTROPISM

the chemical signal that causes plants to elongate and grow cells faster on the side of the plant farthest from the light

⊙Study.com

Phototropism

Gravitropism

- * Growth in response to gravity
 - Roots= positive gravitropism because they grow in the direction of gravity
 - Stems= negative gravitropism because they grow in the opposite direction of gravity
 - gravitropism ensures that the plant will grow roots into the soil
- Gravity affects the distribution of auxin hormones in a cell
 - If a plant falls over, auxin accumulates in the bottom portion of the plant and the stem responds by growing upwards.

Gravitropism

Thigmotropism

- * Growth of a plant in response to touch
- Ex: allows Morning Glory's vines to climb fences
- Ex: In forests, it allows vines to climb towards the light (sun)

Phototropism

Tropisms and Hormones Clip

Phototropism Gravitropism

Nastic Movement

- * Response to environmental stimuli but unlike tropic movements, the direction of the response is not dependent on the direction of the stimulus.
- * Some of the most spectacular plant movements are nastic movements.
 - These include the closing of the carnivorous Venus
 Flytrap leaf when it captures prey or the folding of
 the mimosa leaf when it is disturbed.

Trigger Hairs

- Venus Fly Trap Clip

Photoperiodism

- Responsible for timing of seasonal activities such as flowering and growth
- Respond to periods of light and darkness
- Related to the number of hours that a plant spends in uninterrupted darkness
- Plant pigment phytochrome is responsible for photoperiodism
- Refer to plants as short-day or long-day plants
 - Short-day plants: chrysanthemums & poinsettias flower when days are short
 - Long-day plants: spinach and irises flower when days are long

Plant Hormones

Hormone = "to excite" 1) active in small amounts 2) produced in one part of plant & transported to another for action 3) action is specific for that site

Auxins

-stimulate growth but too much inhibits growth

functions:

- root initiation, stem elongation
 retard abscission (loss) of leaves
 fruits
- α inults
- 3) stimulates cell differentiation

Gibberellins

- * Induces flowering
- Stimulates growth by increasing cell size
 & numbers
 - * Effects of gibberellins

Cytokinins

- induces cell division (cytokinesis)
 affects root growth & differentiation
 stimulates germination
 delays <u>senescence</u> (aging); the progression of irreversible change that
- eventually leads to death