

Interactions Among Animal Systems

Learning Objectives

- · Identify major organ systems in animals
- Describe the interactions that occur among systems to carry out vital animal functions

Anir Elev	mal Systems en major organ syst	sapling[learning
	System	Function(s)
	Skeletal	Structural support
	Muscular	Movement
	Integumentary (skin)	Barrier from external environment
	Circulatory/Cardiovascular	Transport molecules throughout body
	Respiratory	Exchange carbon dioxide & oxygen
	Digestive	Break down food molecules
	Excretory/Urinary	Remove waste products from blood
	Immune	Destroy pathogens that enter body
	Nervous	Send regulatory messages throughout body
	Endocrine	Produce hormones that regulate vital processes
	Reproductive	Production of sex cells & offspring

Negative Feedback

- · Mechanism consists of three parts:
 - Receptors sensors that monitor body conditions
 - <u>Control center</u> brain interprets input from receptors and sends signals to effectors
 - <u>Effectors</u> organs that respond to brain signals to return body conditions to acceptable range

Body Temperature

- Constant internal temperature required to maintain optimal function of cellular processes
- Negative feedback loop:
- Receptors in skin and brain monitor temperature
- High temperature brain signals sweat glands to cool body down
- Low temperature brain signals muscles to contract (shiver) to warm body up

Heart and Respiration Rates • <u>Heart rate</u> - number of Example: Exercise times heart contracts per - Cells utilize oxygen faster minute - Blood pressure rises to meet increased oxygen Respiration rate - number demand of breaths per minute - Heart and respiration rates increase Body varies these rates based on oxygen needs of body cells

Molecule Concentrations in Blood

Negative feedback loop:

- Receptors in endocrine glands monitor molecule concentrations in blood
 - Abnormal concentration brain signals endocrine glands to increase or decrease hormone production
 - Change in blood hormone levels signals organs to adjust molecule levels in the blood

Blood Sugar

Regulated by hormones glucagon and insulin

- Glucagon signals liver to add glucose to the blood
- Insulin signals liver, muscles, and fat cells to remove glucose from the blood
- Negative feedback loop:
 - Low blood sugar glucagon production increases and insulin production decreases, blood sugar *rises*
 - High blood sugar insulin level increases and glucagon level decreases, blood sugar *lowers*

Interactions Among Animal Systems

Learning Objectives

- · Identify major organ systems in animals
- Describe the interactions that occur among systems to carry out vital animal functions

Interactions Among Animal Systems

Organ systems interact to carry out vital functions

- Examples:
 - Regulation
 - Nutrient absorption
 - Reproduction
 - Defense against injury and illness

Rep	roduction	n saplingTearni	ng
	System	Functions	
	Reproductive	Main site of reproductive processes	
	Endocrine	Hormones (testosterone, estrogen, progesterone, etc.) regulate reproductive processes	
	Circulatory	Blood delivers hormones to reproductive system Blood delivers nutrients to developing fetus	
	ļ		starts start if fir 1 1 F F

Immune Memory

<u>Immune memory</u> – phenomenon in which immune system is able to fight a previous infection more quickly

- Lymphocyte cells continue to be produced after pathogen is destroyed
 - Allows for stronger response if same pathogen enters body again

Second Line of Defense

- If pathogens make it into the body, through a cut in the skin, for example, the body's second line of defense swings into action.
- These mechanisms include the inflammatory response, the actions of interferons, and fever.

• When a local response is not enough

- full body response to infection

- higher temperature helps in defense

- raises body temperature

slows growth of germs

• speeds up repair of tissues

helps macrophages

Cell-Mediated Immunity

- Another part of the immune response, which depends on the action of macrophages and several types of T cells, is called cell-mediated immunity.
- This part of the immune system defends the body against viruses, fungi, and single-celled pathogens.
- T cells also protect the body from its own cells when they become cancerous.

Cell-Mediated Immunity

- When a cell is infected by a pathogen or when a phagocyte consumes a pathogen, the cell displays a portion of the antigen on the outer surface of its membrane.
- This membrane attachment is a signal to circulating T cells called helper T cells.
- Activated helper T cells divide into more helper T cells, which go on to activate B cells, activate cytotoxic T cells, and produce memory T cells.

Cell-Mediated Immunity

- Cytotoxic T cells hunt down body cells infected with a particular antigen and kill the cells.
- They kill infected cells by puncturing their membranes or initiating apoptosis (programmed cell death).

Vaccinations

Exposure to harmless version of germ

- stimulates immune system to produce antibodies to invader
- rapid response if future exposure
- Most successful against viral diseases
 - A vaccine stimulates the immune system with an antigen.
 - The immune system produces memory B cells and memory T cells that quicken and strengthen the body's response to
 - repeated infection. – Antibodies produced against a pathogen by other individuals or
 - animals can be used to produce temporary immunity.

Passive Immunity

- Antibodies produced against a pathogen by other individuals or animals can be used to produce temporary immunity. If externally produced antibodies are introduced into a person's blood, the result is passive immunity.
- Passive immunity lasts only a short time because the immune system eventually destroys the foreign antibodies.
- Passive immunity can occur naturally or by deliberate exposure.
- Natural passive immunity occurs when antibodies are passed from a pregnant woman to her fetus (across the placenta), or to an infant through breast milk.
- For some diseases, antibodies from humans or animals can be injected into an individual.
- For example, people who have been bitten by rabid animals are injected with antibodies for the rabies virus.

