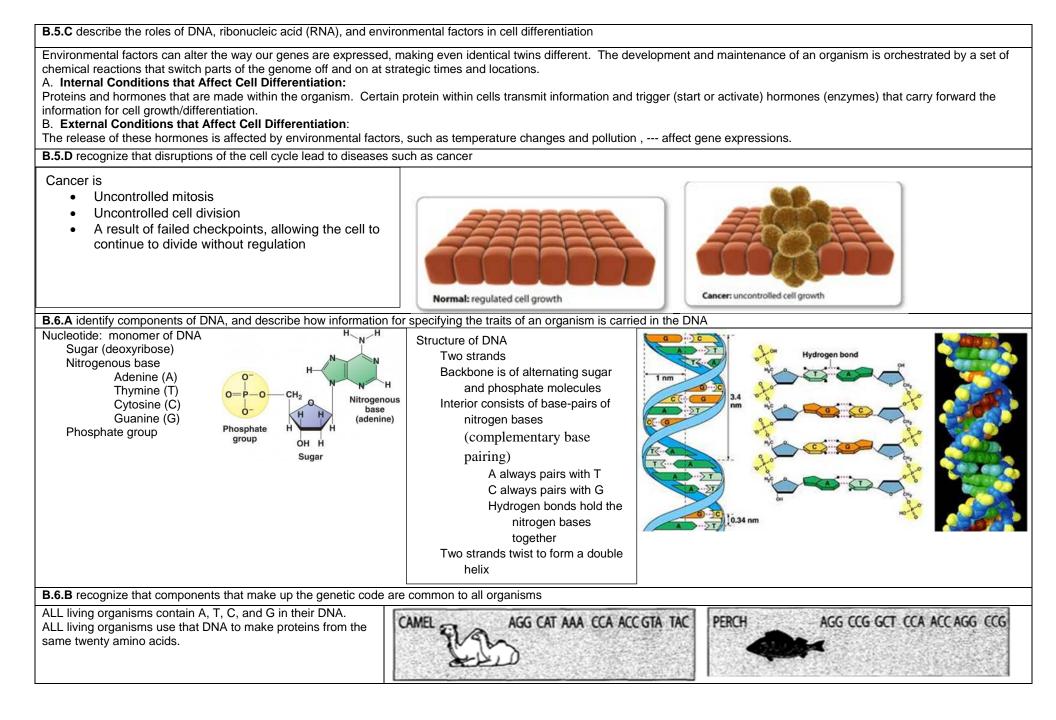
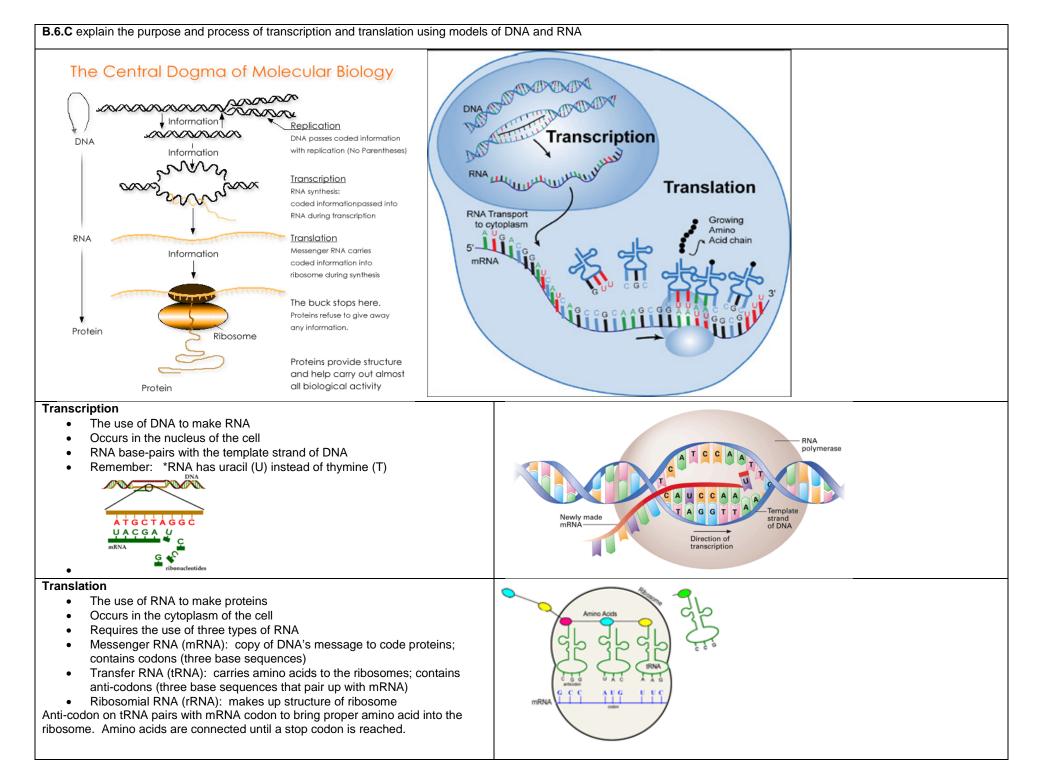
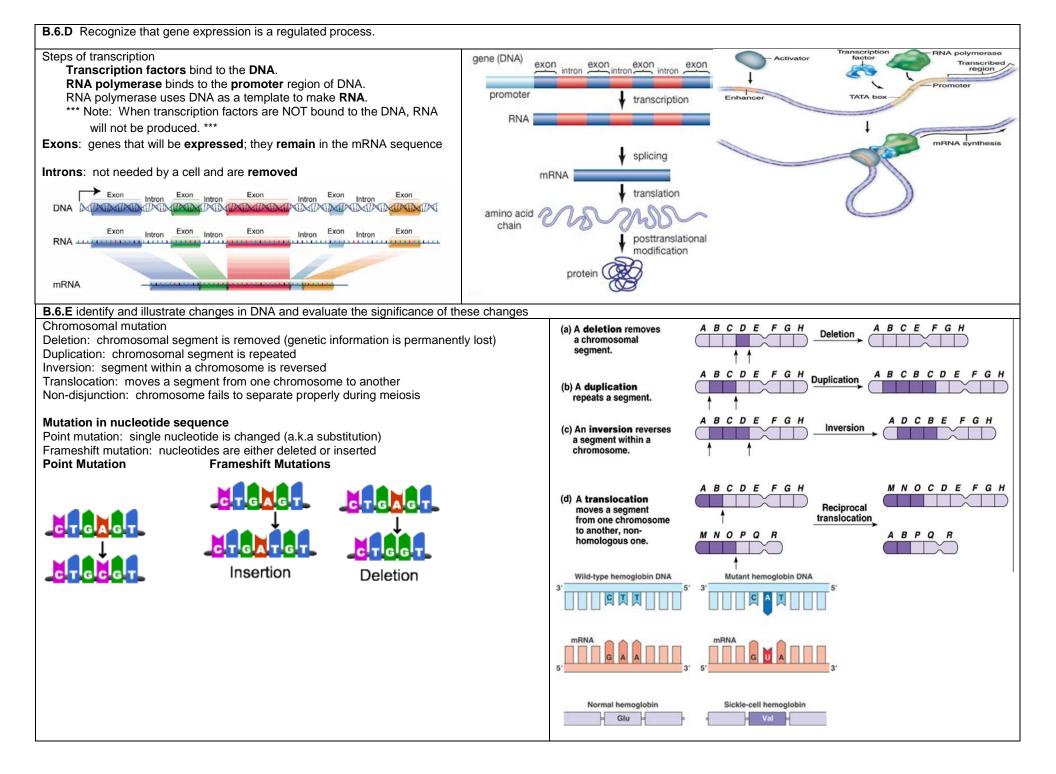

B.4.C compare the structures of viruses to cells, describe viral reproduction, and describe the role of viruses in causing diseases such as human immunodeficiency virus (HIV) and influenza

	Viruses an	d Cells	Examples of Viral Diseases and
Characteristic	Virus	Cell	Infections:
Structure	DNA or RNA core, capsid	Cell membrane, cytoplasm; eukaryotes also contain nucleus and organelles	 HIV/AIDS Influenza (flu) Common cold These diseases can NOT be treated with antibiotics. Antibiotics kill
Reproduction	only within a host cell	independent cell division either asexually or sexually	bacteria only, not viruses.
Genetic Code	DNA or RNA	DNA	
Growth and Development	no	yes; in multicellular organisms, cells increase in number and differentiate	
Obtain and Use Energy	no	yes	
Response to Environment	no	yes	
Change Over Time	yes	yes	

B.5.A describe the stages of the cell cycle, including deoxyribonucleic acid (DNA) replication and mitosis, and the importance of the cell cycle to the growth of organisms


Phase	Events within cell
G ₁	Intensive cellular synthesis (make more organelles)
S	DNA replication occurs, Each chromosome has become two chromatids.
G ₂	Intensive cellular synthesis. Mitochondria and chloroplasts divide. Energy stores increase. Mitotic spindle begins to form.
Mitosis	Nuclear division occurs in four phases (prophase,metaphase, anaphase telophase)
С	Equal distribution of organelles and cytoplasm into each daughter cells

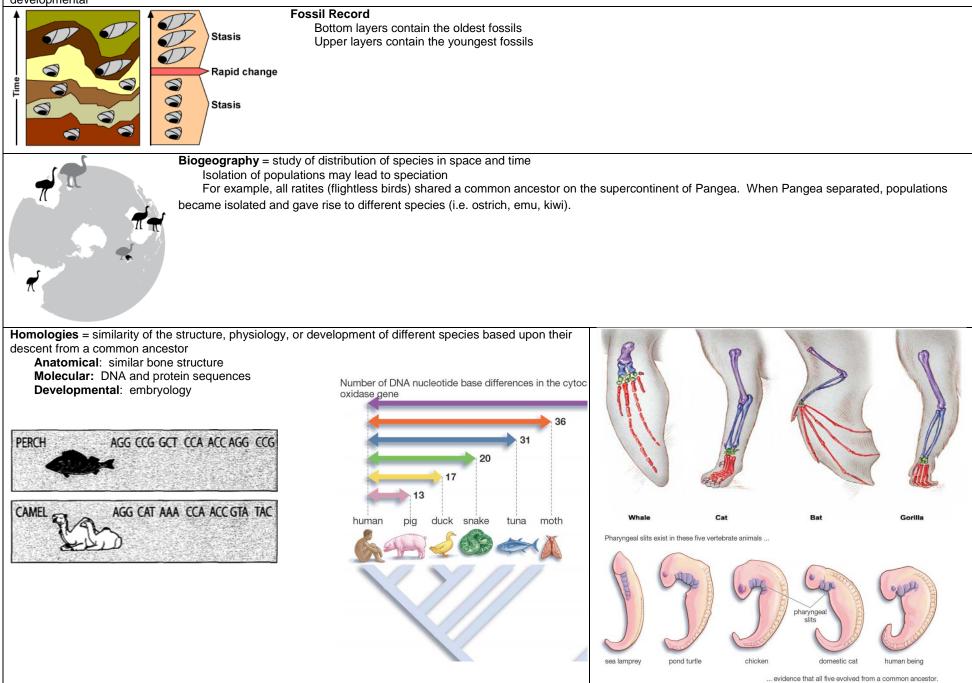


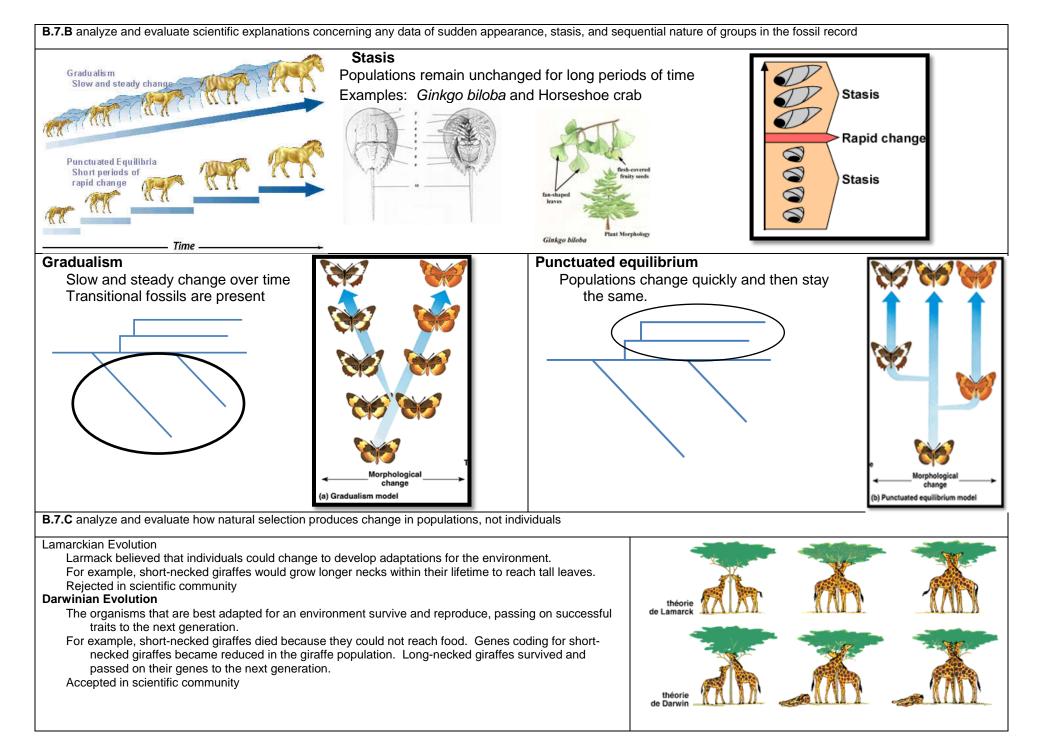


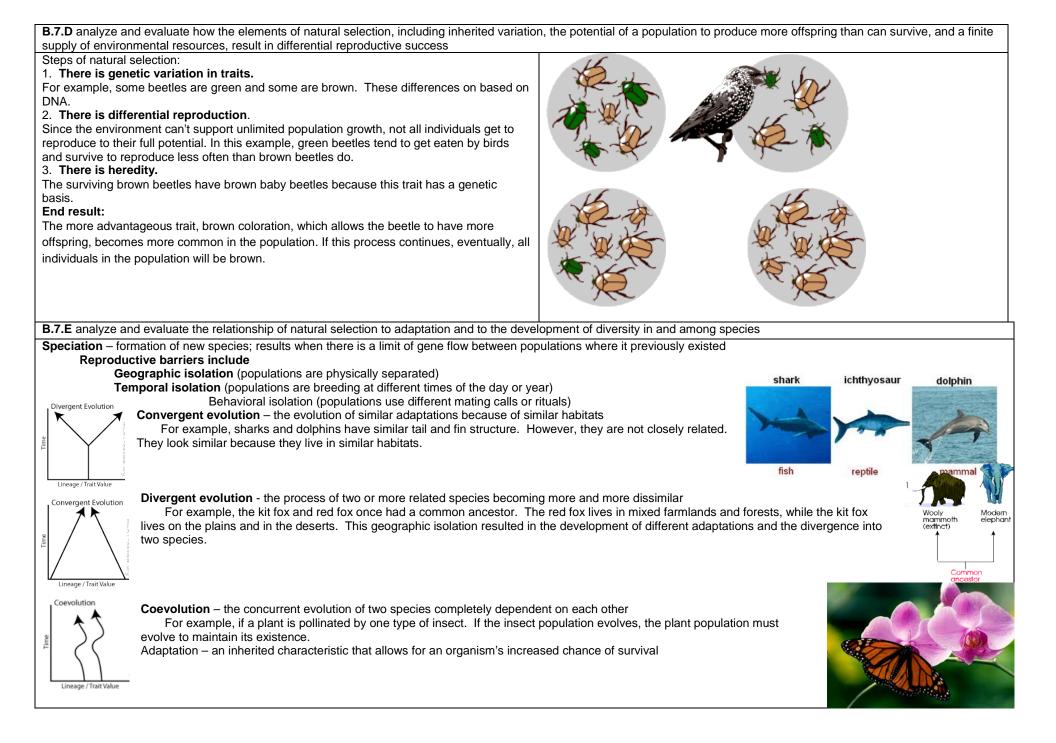
, including roots, sterns, and leaves of plants, and a	annai ceils such as blood, muscle, and epimenum	
Tissue	Function	Location
Parenchyma (ground) guard cell upper epidermis palisade parenchyma choroplasts xylem phloem lower epidermis spongy mesophyll	Many functions Leaf: photosynthesis; allows for gas exchange Root: storage of sugars; transport water	Throughout plant (roots, stems, and leaves)
Xylem (vascular)	Serve as conducting cell to transport water throughout plant	Throughout plant (roots, stems, and leaves)
Sieve plate	Serve as conducting cell to transport sugars	Throughout plant (roots, stems, and leaves)
Sieve tube		Throughout plant (roots, stems, and leaves)
Phicem parenchyma Companion cell	along side sieve tube member	
root hair cell root apidemis n/a	Increase surface area for absorption of water	Roots
n/a	Regulate the opening and closing of pores in the leaf called stoma(ta)	guard cell uticle mesophyll Leaf
n/a	Produce sperm	Flower (in angiosperms); cone (in
	Draduce and	gymnosperms)
n/a	Produce egg	Flower (in angiosperms); cone (in
	Tissue Parenchyma (ground) upper epidermis palisade parenchyma choroplasts xylem phioem iower epidermis sporgy mesophyl Xylem (vascular) Sieve plate Sieve plate Sieve tube Phioem Phioem (vascular) Phioem (vascular) Total of the spinoes n/a	Parenchyma (ground) Many functions Leaf: photosynthesis; allows for gas exchange Root: storage of sugars; transport water Root: storage of sugars; transport water Root: storage of sugars; transport water Xylem (vascular) Serve as conducting cell to transport water View (vascular) Serve as conducting cell to transport sugars Phloem (vascular) Serve as conducting cell to transport sugars Phloem (vascular) Increase surface area for absorption of water Increase surface area for absorption of water Regulate the opening and closing of pores in the leaf called stoma(ta) n/a Produce sperm

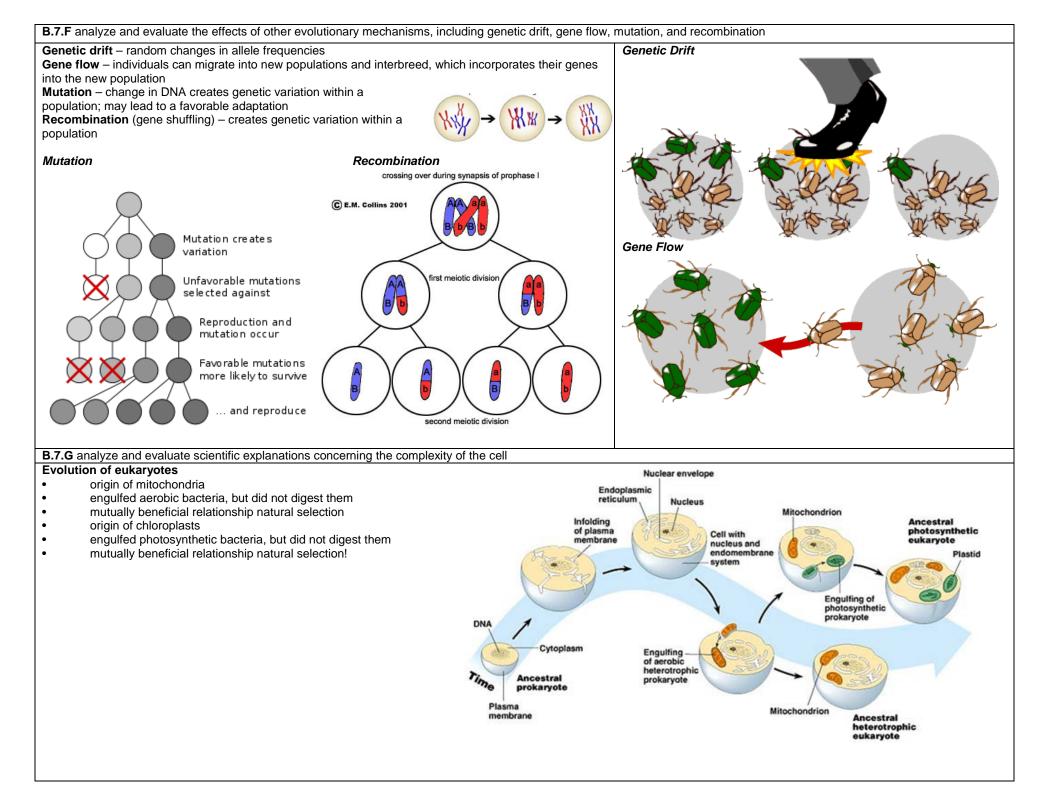
Function	Picture	Structure
Nerve cells : Carry messages to other parts of the body	Axon terminal Cell body Schwann cell Nucleus Nucleus	Nerve cells (or neurons) are very long so that they can carry messages to different parts of the body. They have many branches at the end so that they can connect with many other nerve cells.
Muscle cells: They are classified as skeletal, cardiac, or smooth muscles. Their function is to produce force and cause motion. Muscle cells contain many mitochondria for ATP (energy).	Cardiac muscle fibre	Skeletal = striated; voluntary; found in muscles of arms and legs Smooth = not striated; involuntary; found lining the digestive tract Cardiac = striated; involuntary; found in the heart
The main function of red blood cells is to carry oxygen from the lungs to the parts of the body where it is needed.	Red blood cell	They are shaped to give them a large surface area so they can absorb oxygen more easily. The cytoplasm contains a protein called 'hemoglobin', which carries oxygen
White blood cells fight pathogens and help stop infections.	High WBC count Barophil Ecclinophil Neutrophil Brell Bard cell Toel Monorche Bard cell Toel Monorche	White blood cells are capable of 'eating' bacteria and breaking them down. A high white blood cell count indicates that your body is fighting a pathogen.
Epithelial cells comprise tissues that line organs.	Paulo tes I cell monocyte Peudostratified ciliated columnar Simple cuboidal Simple cuboidal Stratified columnar Stratified columnar	Epithelial tissue is comprised of multiple layers. This is often used for protection (i.e. the skin).
Spermatozoon carry genetic information to an egg.	Simple columnar Plasma membrane Diece Tail Mitchondrion (piral shape) Nucleus Acrosome	They have a tail which they use for swimming. They have mitochondrion to release the energy they need for swimming. The head of the sperm contains special chemicals that help it to penetrate an egg.

B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses an	nd non	-Mendelian ir	ineritance	_		
Mendelian Genetics Definitions		C C	pollen			
Gene – section of DNA that codes for proteins		W	0			
<u>Alleles</u> - different forms of a gene; either dominant or recessive		в	b	-		
Chromosome - structure made up of DNA and proteins				-		
Genotype - genetic makeup of an organism (ex. AA, Aa, aa)		в				
Phenotype - visible expression of genetic makeup; physical traits (ex. blue eyes)	6) в 🔍				
Homologous chromosomes – pair of chromosomes that contain genes for the same traits; one from mom and one	1	BB	Bb			
from dad	pis			-		
Homozygous - possesses identical alleles for a given gene on homologous chromosomes (ex. AA or aa); also	ļ ç	Р 👝 🔍	Q			
known as true-breeding						
Heterozygote - possesses different alleles for a given gene on homologous chromosomes (ex. Aa); also known as		Bb	bb			
hybrids			-			
Sex chromosomes - determine the sex of an individual; in humans, X and Y chromosomes; XY for males, XX for						
females		Guine	a pig fe	male		
Autosome - chromosome that is not a sex chromosome		Guinea	a pig ie	mare		
P generation- individuals for initial cross		Gametes	BS	Bs	bS	bs
F1 generation - offspring from initial cross		Gametes	63	DS	03	US
F2 generation - offspring that results from cross of F1 individuals						
Dominant allele - masks recessive allele; expressed in homozygous dominant and heterozygous conditions;		BS	BBSS	BBSs	BbSS	BbSs
represented by capital letters (i.e. A, B, H, L)	0					
<u>Recessive allele</u> - not expressed in heterozygous condition; expressed only when individual is homozygous for	alam	3				
the allele; represented by lowercase letters (i.e. a, b, h)	1 2	Bs	BBSs	BBss	BbSs	Bbss
Monohybrid cross – only one trait is involved (ex. Bb x Bb)		7				
<u>Dihybrid cross</u> – two or more traits are involved (ex. BbSs x BbSs)	- in					
Non-Mendelian Genetics			BbSS	BbSs	bbSS	bbSs
Incomplete dominance - no allele completely dominates another; results in a phenotype intermediate to that of	Guinea	5				
parents	1.5					
Ex. A red flower (RR) crossed with a white flower (WW) produces pink flowers (RW).		bs	BbSs	Bbss	bbSs	bbss
<u>Codominance</u> - both alleles are expressed		·				
Ex. A red cow (RR) crossed with a white cow (WW) produces a white AND white cow (RW).						
Ex. A person with Type AB blood has a genotype of IAIB.						
Multiple alleles – more than two alleles exist for a trait						
Ex. Human blood types have three possible alleles (IA, IB, and i).						
Pedigree					Color Bli	
Square = male		ć	an X-linke	ed Reces	sive Trai	t
Circle = female						
Shaded = affected						
Non-shaded = normal						
Half-shaded = carrier						
Possible genotypes for x-linked recessive diseases (example: colorblindness)			☐ ↓			
Males					ЛСС	
X ^E Y: normal		F				ı
X ^e Y: colorblind			$\sim \perp$.	╧	╸┍┷┑╭┙	
Females)()) -
X ^E X ^E : normal			\sim			
X ^E X ^e : carrier (normal phenotype, but can pass recessive allele to offspring)	Г		_			<u> </u>
X ^e X ^e : colorblind		▫┍╧┑┢╲	. —			
)()		()(
			\sim			
			Carrier of	Trait		
			anner ur	Trait		


B.6.G recognize the significance of meiosis to sexual reproduction	
 Meiosis Creates four genetically unique daughter cells due to crossing over (exchange of DNA between homologo chromosomes) Reduction in chromosome number from diploid to haploid Diploid: two sets of chromosomes (one from mom, one from dad) Haploid: one set of chromosomes Results in sex cells or gametes 	Diploid (2N) parent cell Two haploid (N) cells with each chromosome still consisting of two chromatids Four haploid (N) progeny cells
B.6.H describe how techniques such as DNA fingerprinting, genetic modifications, and chromosomal analysis	are used to study the genomes of organisms
Gel electrophoresis DNA is cut into smaller pieces using restriction enzymes An electrical current is applied DNA is separated by size. Shorter fragments move farther down the gel than longer fragments.	DNA samples from: crime suspect suspect suspect #1 #2 #3 1 (common acestor) acestor) Image: Suspect Image: Suspect Image: Suspect Suspect #2 matches the crime scene sample. Image: Suspect suspect Image: Suspect suspect Deer species #3 is most closely related to deer species #1 because they have five DNA bands in common. Image: Suspecies #1 because they have five DNA bands in common.
KaryotypeXXXXXXXXXXXXXX $1-3$ $1-3$ 1 2 3 4 5 XXXXXXXXXXXXXXXX $1-3$ $1-3$ $4+5$ 1 2 3 4 5 XXXXXXXXXXXXXXXX 6 7 8 9 10 11 12 XXXXXXXXXXXX $13-15$ 16 17 18 XXXXXXXXXX $19-20$ 21 22 X	K K K X N K


Normal male


Normal female


Down's Syndome Female (extra #21 chromosome)

B.7.A analyze and evaluate how evidence of common ancestry among groups is provided by the fossil record, biogeography, and homologies, including anatomical, molecular, and developmental

B.8.A define taxonomy and recognize the importance of a standardized taxonomic system to the scientific community

Taxonomy is the classification of organisms in a hierarchical system.

Organisms are assigned a scientific name using binomial nomenclature.

Scientific name = Genus + species

The genus of a scientific name is always capitalized. The species is lower-cased. The whole name is written in italics. Scientific names are standardized and universal. Common names vary by region and may lead to confusion. A scientific name is unique to each species. **Ex. Homo sapiens, Zea mays**

There are a number of goals to biological classification

- to examine the relationships between various organisms,
- to construct evolutionary trees to explore the origins of life on Earth
- to provide consistent ways to name and categorize organisms.

For example, the bird called a robin in Great Britain is a different bird from the bird called a robin in North America. To avoid confusion, biologists need a way to name organisms that does not depend on language or location.

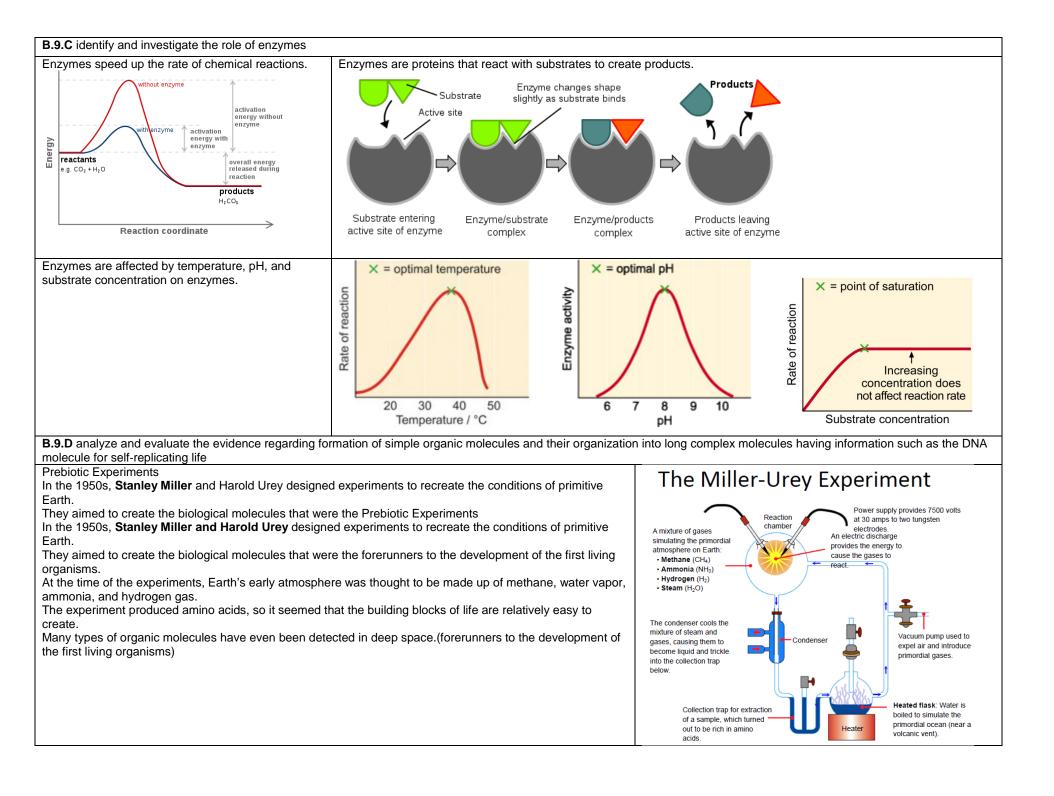
		Classificatio	n of Living Thing	gs			
DOMAIN	Bacteria	Archaea		Euk	arya		
KINGDOM	Eubacteria	Archaebacteria	Protista	Fungi	Plantae	Animalia	
B categorize orga	anisms using a hier	archical classification	system based on	similarities and di	fferences shared a	among groups	
ghetti" or "Kids Ρι	is a domain y is a species le order from Kingd ut Candy on Father Call belong to the s	lom to Species by usi 's Green Shirt." ame family; and spec		C C	·	for Great	Domain Eukarya Kingdom Animalia
nogenetic Trees of	Salamander	Turtle Leopar Hair Amniotic egg	 DNA and p Species to The closer the more si Organisms right of the vertebral co 	rotein sequences. the far left are the together organism milarities they sha possess are chara labeled trait. For	most ancestral. is appear on the cl re. acteristic if they are example, the turtle valking legs, and a	adogram, e to the has a	Class Mammalia Order Carnivora Family Felidae

Dichotomous keys help to classify organisms based on their characteristics. How to use a dichotomous key: Always start at #1 on the dichotomous key, regardless of the organism chosen.

Read options 'a' and 'b' for #1. Determine which description matches the organism in question. Follow the directions after the matching description.

Continue until description matching the organism reveals the name of organism.

What tree is this? 1a. leaves broad......go to 2 1b. leaves needle-like.....go to 3 2a. margin smooth.....persimmon 2b. margin toothed.....elm 3a. cone woody and elongated...pine 3b. cone soft and round.....ceda

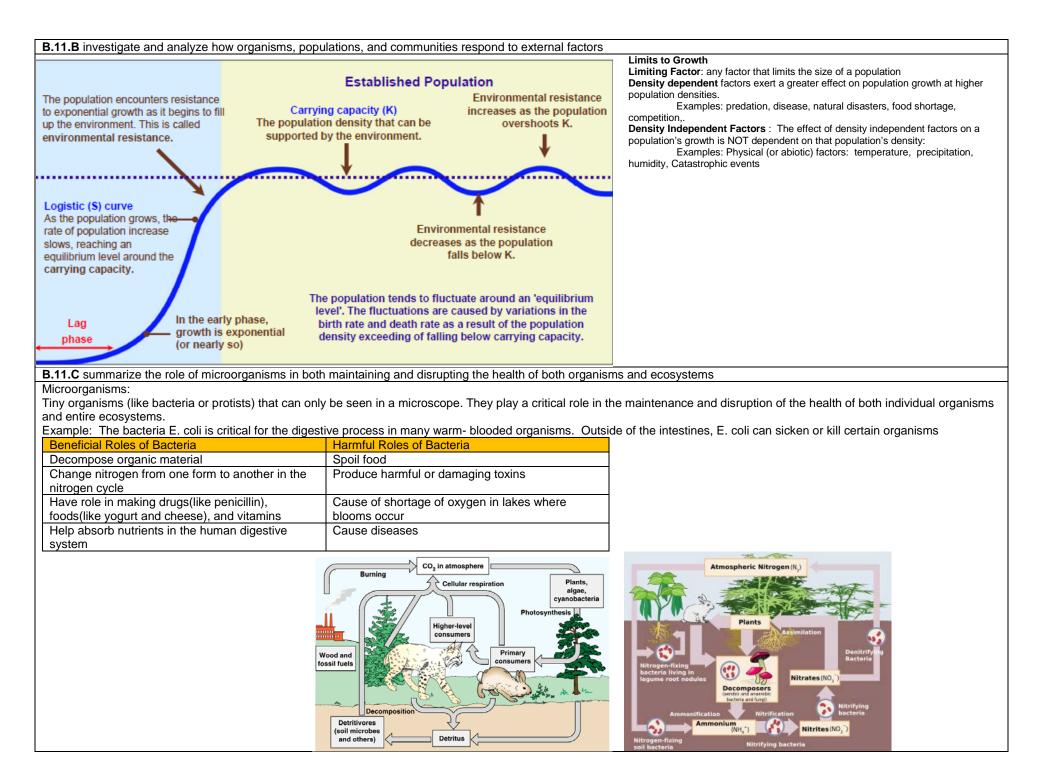

B.8.C compare characteristics of taxonomic groups, including archaea, bacteria, protists, fungi, plants, and animals

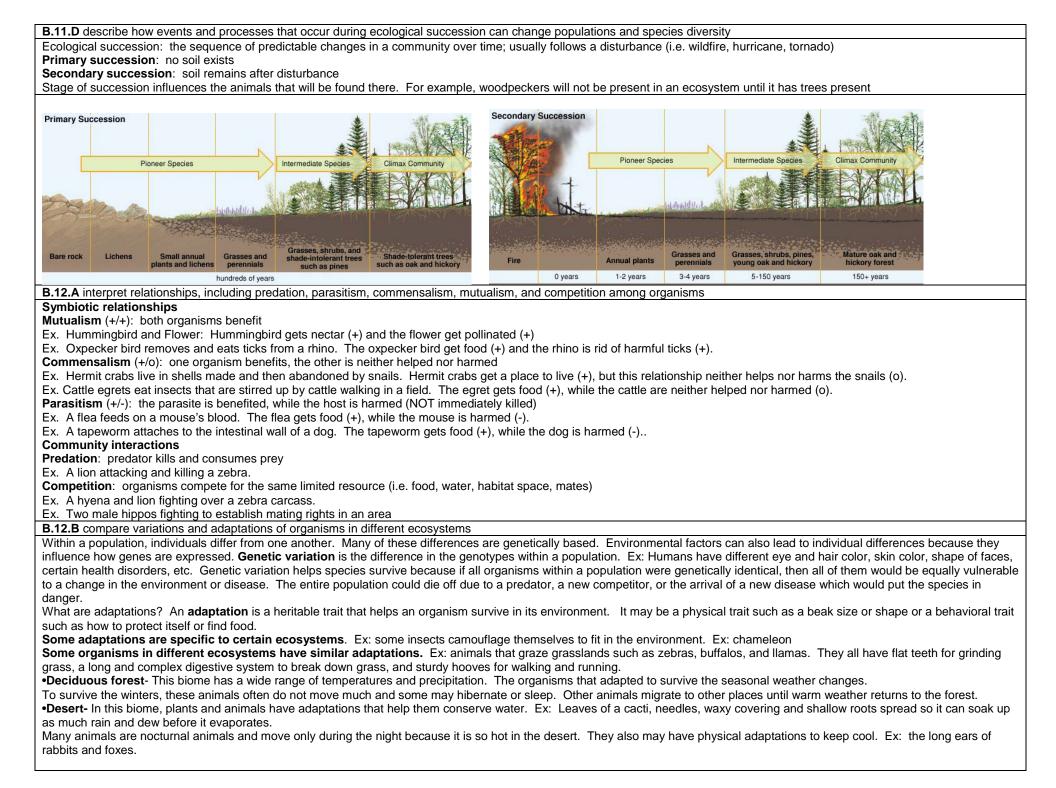
		Classificatio	on of Living Thing	ļs				
DOMAIN	Bacteria	Archaea		Eukarya				
KINGDOM	KINGDOM Eubacteria		Protista	Fungi	Plantae Animalia			
CELL TYPE	Prokaryote	Prokaryote	Eukaryote	Eukaryote	Eukaryote	Eukaryote		
CELL STRUCTURES	Cell walls with peptidoglycan	Cell walls without peptidoglycan	Cell walls of cellulose in some; some have chloroplasts	Cell walls of chitin	Cell walls of cellulose; chloroplasts	No cell walls or chloroplasts		
NUMBER OF CELLS	Unicellular	Unicellular	Most unicellular; some colonial; some multicellular	Most multicellular; some unicellular	Multicellular	Multicellular		
MODE OF	Autotroph or heterotroph	Autotroph or heterotroph	Autotroph or heterotroph	Heterotroph	Autotroph	Heterotroph		
EXAMPLES	Streptococcus, Escherichia coli	Methanogens, halophiles	<i>Amoeba, Paramecium,</i> slime molds, giant kelp	Mushrooms, yeasts	Mosses, ferns, flowering plants	Sponges, worms, insects, fishes, mammals		

Autotroph – capable of producing its own food

Heterotroph - NOT capable of producing its own food; must obtain food from another source

	(Carbohyd	Irates			Prote	eins			Lin	pids		Nucleic Acids
Atoms		Carbon, I		en, oxyg	jen			en, som	netimes sulfui	-	, H, O		C, H, O, nitrogen, phosphorous
Mono-mer	1	Monosac	charide			Amir	no acid			No	o monomer		Nucleotide
Function	\$	Short-terr structural cell walls	suppor		ge; ponent of		Transport molecules, act as enzymes (speed up rate of chemical reactions)				ong-term en ell membran	ergy storage; main component of e	Store genetic information; ac as instructions to make proteins
Example		Sugars, g cellulose,				Hem	oglobin			Ph	nospholipids	s, oils, fats	DNA, RNA
Picture/Diagra		H H H H H H H				Let aver Seconda Regular sa Caustoner	y structure ry		ation in terms		ospholipid	extracellular fluid phosphate "head lipid "tail" cholesterol intracellular fluid	gr
		0 ^r H9					(pood)	y	02)	5 (S	0	Sunlight energy CO ₂	
NATION	RESPIRATION	C¢H12O\$ + 8O2 → 8CO2 + 8H2O	Mitochondria	All the time	C ₆ H ₁₂ O ₆ & O ₂	CO ₂ & H ₂ O	Chemical bonds (in food)	Release of energy	Oxidation (oxidation of glucose to CO ₂)	Catatorie: urears sugars Exergonic → produces energy (products less energy than reactants	ATP, NADH & FADH ₂ (All NADH & FADH ₂ In the Inner mitochondrial memotrane some ATP produced by substrate-level phosphon/lation)	H ₃ O	
COMPARISON BETWEEN PHOTOSYNTHESIS & RESPIRATION	PHOTOSYNTHESIS RESPIRATION	$8CO_2 + 8H_2O \rightarrow C_6H_1O_6 + 8O_2$ $C_6H_1O_6 + 8O_2$	Chloroplast	In light All the time	CO ₂ & H ₂ O C ₆ H ₂ O ₆ & O ₂	G ₆ H ₁₂ O ₆ & O ₂ & H ₂ O	Visible light (sunlight) Chemical bonds (in	Storage of energy Release of energ	(ncose)	irt≊l		H ₂ O	ATP for work



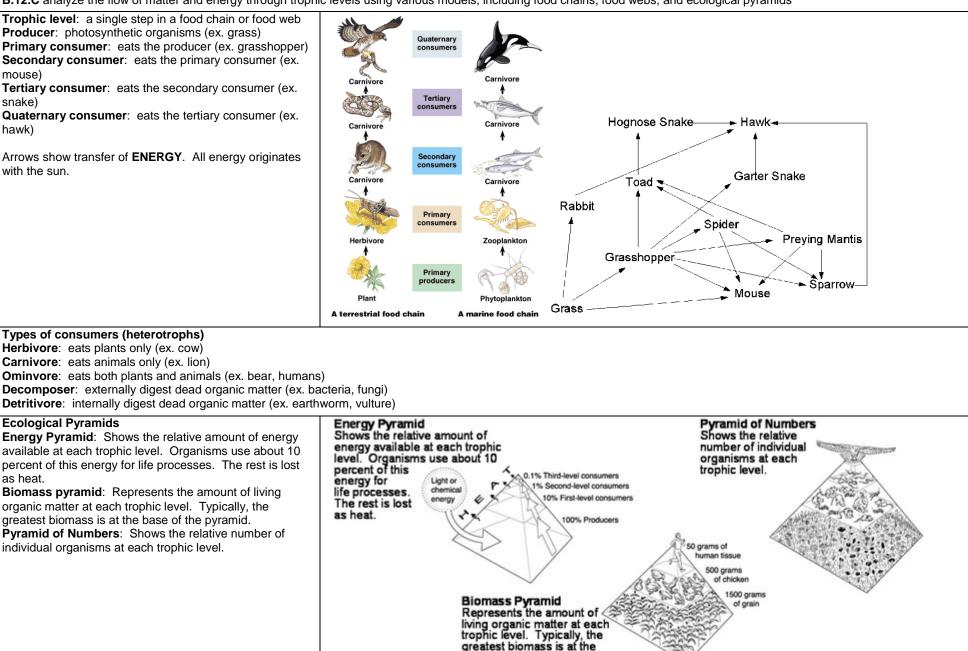

0 ,	ems interact to perform many function Regulation	The endocrine system makes certain hormones. Blood in the circulatory system
	rtogulation	carries them to the skeletal system to control the amount of calcium released from
		bones.
	Nutrient Absorption	Food is broken down in the stomach mechanically by the muscular system
		(churns food) and chemically by water, acid, and enzymes in the digestive system; nutrients are then absorbed by blood in the circulatory system
	Reproduction	Certain hormones produced in the endocrine system control ovulation in a female's reproductive system
	Defense	Mucus in the lungs traps a virus in the respiratory system. T-cells in the immune
		system destroy virus- infected cells. Nerves in the nervous system sense pain from a fire on the skin
ribe the inte	eractions that occur among systems	from a fire on the skin
e the inte		from a fire on the skin that perform the functions of transport, reproduction, and response in plants
be the inte	Function	from a fire on the skin that perform the functions of transport, reproduction, and response in plants Example of interactions
ribe the inte		from a fire on the skin that perform the functions of transport, reproduction, and response in plants Example of interactions The root system uptakes water.
e the inte	Function	from a fire on the skin that perform the functions of transport, reproduction, and response in plants Example of interactions The root system uptakes water. Xylem vessels transport water to the leaves in the shoot system.
cribe the inte	Function Transport	from a fire on the skin that perform the functions of transport, reproduction, and response in plants Example of interactions The root system uptakes water. Xylem vessels transport water to the leaves in the shoot system. Phloem vessels transport sugars and nutrients throughout the plant.
cribe the inte	Function	from a fire on the skin that perform the functions of transport, reproduction, and response in plants Example of interactions The root system uptakes water. Xylem vessels transport water to the leaves in the shoot system. Phloem vessels transport sugars and nutrients throughout the plant. The reproductive organs in a flower are the pistil (female) and the stamen (male).
cribe the inte	Function Transport	from a fire on the skin that perform the functions of transport, reproduction, and response in plants Example of interactions The root system uptakes water. Xylem vessels transport water to the leaves in the shoot system. Phloem vessels transport sugars and nutrients throughout the plant. The reproductive organs in a flower are the pistil (female) and the stamen (male). A seed is a mature, pollinated ovule (fertilized egg).
ribe the inte	Function Transport	from a fire on the skin that perform the functions of transport, reproduction, and response in plants Example of interactions The root system uptakes water. Xylem vessels transport water to the leaves in the shoot system. Phloem vessels transport sugars and nutrients throughout the plant. The reproductive organs in a flower are the pistil (female) and the stamen (male).
cribe the inte	Function Transport	from a fire on the skin that perform the functions of transport, reproduction, and response in plants Example of interactions The root system uptakes water. Xylem vessels transport water to the leaves in the shoot system. Phloem vessels transport sugars and nutrients throughout the plant. The reproductive organs in a flower are the pistil (female) and the stamen (male). A seed is a mature, pollinated ovule (fertilized egg). Hormones in a plant's root system help trigger the growth of a seed in the shoot
cribe the inte	Function Transport Reproduction	from a fire on the skin that perform the functions of transport, reproduction, and response in plants Example of interactions The root system uptakes water. Xylem vessels transport water to the leaves in the shoot system. Phloem vessels transport sugars and nutrients throughout the plant. The reproductive organs in a flower are the pistil (female) and the stamen (male). A seed is a mature, pollinated ovule (fertilized egg). Hormones in a plant's root system help trigger the growth of a seed in the shoot system.

Response Phototropism: plant movement in response to light Gravitropism: plant movement in response to gravity Thigmotropism: plant movement in response to touch

systems and relat	e levels of organiza e the levels to each		B.11.A describe the role of internal feedback mechanisms in the maintenance of homeostasis
whole system			
Level of Organization	Explanation	Example	In negative feedback the body responds to an extreme condition by reversing the current direction of change. Example: Maintaining stable blood glucose levels
Atomic Level	Atoms are defined as the smallest unit of an element that still maintains the property of that element.	Carbon, Hydrogen, Oxygen	Low blood sugar pancreas releases glucagon liver releases glucose into blood normal blood sugar obtained High blood sugar pancreas releases insulin fat cells take glucose from blood normal blood sugar obtained
Molecular Level	Atoms combine to form molecules which can have entirely different properties than the atoms they contain.	Water, DNA, Carbohydrates	Example: Maintaining stable body temperature High body temperature blood vessels dilate and sweat glands secrete sweat body temperature returns to normal Low body temperature blood vessels constrict and muscles contract
Cellular Level	Cells are the smallest unit of life. Cells are enclosed by a membrane or cell wall and in multicellular organisms often perform specific functions.	Muscle cell, Skin cell, Neuron	body temperature returns to normal Homeostasis and temperature control Nervous system
Tissue Level	Tissues are groups of cells with similar functions	Muscle, Epithelial, Connective	Nervous system signals dermal blood vessels to dilate and sweat glands to secrete
Organ Level	Organs are two or more types of tissues that work together to complete a specific task.	Heart, Liver, Stomach	Body temperature rises above normal 37°C (98.6°F) Body temperature Body temperature normal Body temperature Body temperature
Organ System Level	An organ system is group of organs that carries out more generalized set of functions.	Digestive System, Circulatory System	hypothalamus normal Hypothalamic set point Nervous system signals dermal blood vessels to conserved Mervous System signals dermal blood vessels to conserved Hypothalamic set point Nervous System signals dermal blood vessels to conserved Hypothalamic set point Normal Hypothalamic set point Hypothalamic set point Normal Hypothalamic set point Hypothalamic set point Hypot
Organismal Level	An organism has several organ systems that function together.	Human	If body temperature continues to drop, nervous system signals muscles to contract involuntarily
condition by prom Example: Giving	back the body responsion noting the current di birth huously secreted to	rection of change.	 A Oxytocin carried in bloodstream to uterus Brain stimulates pituitary gland to secrete oxytocin (1) Head of fetus pushes against cervix (2) Nerve impulses from cervix transmitted to brain

B.12.C analyze the flow of matter and energy through trophic levels using various models, including food chains, food webs, and ecological pyramids

Trophic level: a single step in a food chain or food web Producer: photosynthetic organisms (ex. grass) **Primary consumer**: eats the producer (ex. grasshopper) Secondary consumer: eats the primary consumer (ex. mouse)


Tertiary consumer: eats the secondary consumer (ex. snake)

Quaternary consumer: eats the tertiary consumer (ex. hawk)

Arrows show transfer of **ENERGY**. All energy originates with the sun.

Ecological Pyramids

as heat.

base of the pyramid.

B.12.E describe the flow of matter through the carbon and nitrogen cycles and explain the consequences of disrupting these cycles

The carbon cycle is a process that moves carbon between the atmosphere, the Earth's surface, and living things. Carbon is recycled through respiration, photosynthesis, fuel combustion, decomposition; carbon can be atmospheric or dissolved, or can be found in organic compounds within the body.

How does the carbon cycle works?

- In the atmosphere, carbon exists mostly as carbon dioxide. Carbon dioxide leaves the atmosphere when it dissolves in water or is taken up by plants for photosynthesis.
- It is released in the atmosphere during cellular respiration, geologic processes such as volcanic eruptions, and when fossil fuels or forests are burned.

What are some consequences of disruptions of the carbon cycle?

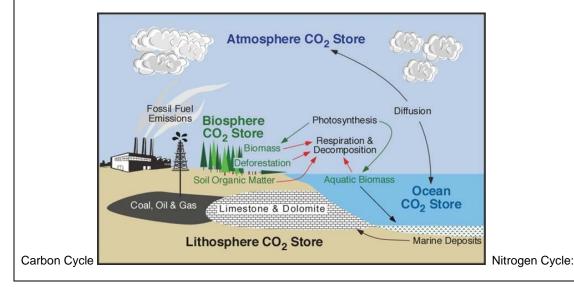
• Over the past 100 years, the levels of carbon dioxide in Earth's atmosphere have increased. Human activities such as the burning fossil fuels and forests are releasing carbon dioxide into the atmosphere at alarming rates and it is being released faster than it can be removed by natural processes.

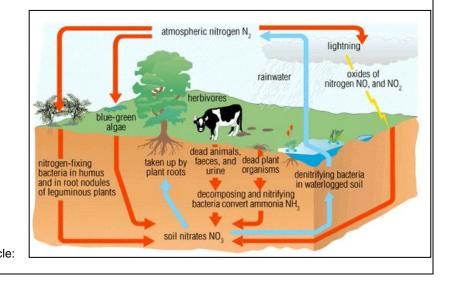
- Increasing levels of carbon dioxide is a major contributing factor to the global climate change. Scientists say that increasing carbon dioxide which is a greenhouse gas that helps keep heat from leaving the atmosphere. The higher carbon dioxide levels are causing rising temperatures and climate change.
- The Greenhouse effect also affects the oceans. When CO₂ or carbon dioxide dissolves in water, carbonic acid forms which causes the water to become more acidic (acidification). This negatively affects marine organisms that have a low tolerance for changing pH levels

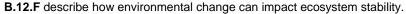
Nitrogen Cycle – producers take in nitrogen compounds in soil and pass to consumers that consume the producers; decomposers (bacteria) break down nitrogen compounds and release nitrogen gas to air or usable nitrogen so the soil. The nitrogen cycle involves the exchange of nitrogen between living things and their environment.

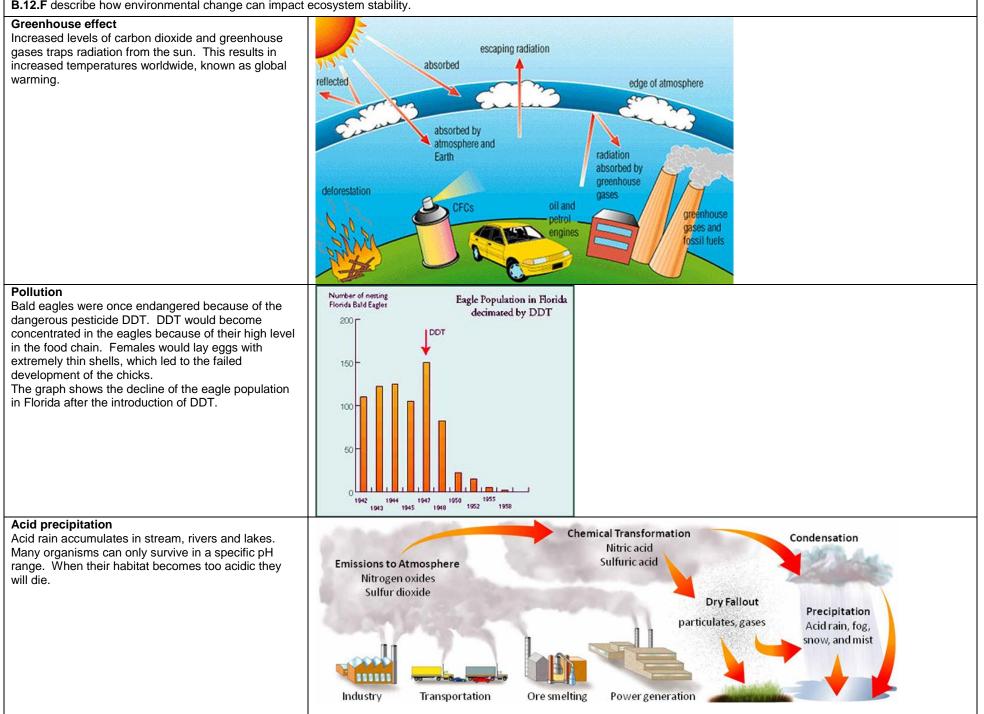
- Nitrogen gas is removed from the atmosphere by a process called **nitrogen fixation**.
- Nitrogen fixation is the process by which bacteria change nitrogen gas into a form that plants can use.
- Certain bacteria in the soil and water are able to fix nitrogen. Some of these bacteria live in the roots of certain plants. Lightning also fixes nitrogen.

What are some consequences of disruptions to the nitrogen cycle?


One problem


To increase plant growth, farmers and gardeners mix nitrogen containing fertilizer into the soil. The fertilizer runoff can affect the balance of nitrogen in bodies of water. In a process called eutrophication, nitrogen dissolves in the body of water and stimulates the growth of plants and algae.


When plants and algae die, the bacterial populations that feed on dead matter boom. These bacteria consume so much oxygen from water that fish and other aquatic animals cannot survive.


Another problem

Acid precipitation can also disrupt the nitrogen cycle. Acid precipitation can lead to the death of plants and animals by altering the pH levels of soil and water. It can also cause harmful metals from pipes to enter drinking water.

